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I. REVIEW

Last time we:
(1) Defined the genus of a compact, connected Riemann surface X as dimC Ω(X), the

dimension of the space of holomorphic differentials; defined the canonical map
(2) Defined triangulations and proved the Riemann-Hurwitz Theorem
(3) Defined the fundamental group

II. THE FUNDAMENTAL GROUP AND COVERING SPACES

II.1. A crash course on the fundamental group.

Definition 1. Let X be a topological space and P ∈ X. Two loops γ0 and γ1 based at P are
(pointed) homotopic if there is a continuous map H : [0, 1]× [0, 1]→ X such that

H|0×[0,1] = γ0, H|1×[0,1] = γ1

and H(s, 0) = H(s, 1) = P for all s ∈ [0, 1]. Such an H is a (pointed) homotopy of γ0 and
γ1.

A homotopy defines a continuous family of loops γs(t) := H(s, t) interpolating γ0 and
γ1.

Lemma 2. Homotopy is an equivalence relation on the set of loops based at P.

Given a path γ, we denote its homotopy class by [γ].

Definition 3. Given two paths γ1, γ2 with γ1(1) = P = γ2(0), we define their concatena-
tion by

(γ1 ∗ γ2)(t) =

{
γ1(2t) if 0 ≤ t ≤ 1/2
γ2(2t− 1) if 1/2 ≤ t ≤ 1 .
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In other words, γ1 ∗ γ2 is the path γ1 followed by the path γ2, with the variable appro-
priately rescaled so that the domain is still [0, 1].

Definition 4. Let X be a topological space and P ∈ X. The fundamental group of X (based
at P) is the set of homotopy classes of loops based at P, and is denoted π1(X, P). The
space X is simply connected if π1(X, P) if it is connected and π1(X, P) is the trivial group
for some (hence, any) choice of basepoint P ∈ X.

Proposition 5. The fundamental group is a group under the concatenation operation defined
above. The identity element is [cP], where cP is the constant map sending t 7→ P for all t ∈ [0, 1].
The inverse of an element [γ] is the class of the reverse map γ−1(t) := γ(1− t).

Lemma 6. Assume X is path connected and let P, Q ∈ X. Then π1(X, P) ∼= π1(X, Q).

Proof idea. Let α : [0, 1] → X be a path from P to Q, so α(0) = P and α(1) = Q. Given a
loop γ based at P, then α−1 ∗ γ ∗ α is a loop based at Q. Similarly, given a loop δ based
at Q, we obtain a loop α ∗ δ ∗ α−1 based at P. These two maps are homomorphisms and
mutually inverse up to homotopy, hence provide the desired isomorphism. �

Example 7.
(1) Let X = S1. We’ll show this rigorously later using covering spaces, but intuitively

we would already guess that π1(S
1, 1) ∼→ Z, via the map that takes a loop γ to its

winding number, i.e., the number of times it goes around the origin.
(2) Let Λ ⊆ C be a lattice and X = C/Λ be the corresponding torus. Note that X is

homeomorphic to S1 × S1. Again, just thinking intuitively we see that π1(X, x) ∼=
Z×Z. The generators (1, 0) and (0, 1) correspond to the path that traverses one of
the longitudinal circles, and the path that traverses one of the meridional circles,
respectively.

Remark 8. In fact, it is true in general that π1(X×Y) ∼= π1(X)×π1(Y). The idea is that a
loop γ : [0, 1]→ X×Y is equivalent to the data of loops δ1 : [0, 1]→ X and δ2 : [0, 1]→ Y,
and this correspondence respects homotopy.

Remark 9. There’s much more to say about the fundamental group. The fundamental
group defines a functor from the category of topological spaces to the category of groups,
so a continuous map f : (X, x) → (Y, y) of pointed topological spaces induces a map
f∗ : π1(X, x)→ π1(Y, y), given by [γ] 7→ [ f ◦ γ], where γ : [0, 1]→ X is a loop.

II.2. Covering spaces. Covering spaces provide a powerful tool for computing funda-
mental groups. They are also in some sense (which can be made very precise) the topo-
logical analogue of an algebraic closure, so studying covering spaces is like a topological
version of Galois theory.

Historically, they often arose when people were trying to solve differential equations
on a space that had “holes”, i.e., was not simply connected. Often the problem couldn’t
be solved on the starting space, but did have a solution after passing to a suitable cover.

Definition 10. Let X be a topological space. A covering space of X is a topological space
E together with a continuous map π : E → X called a covering map such that the fol-
lowing property holds. For each P ∈ X there exists a neighborhood V of P such that

2



π−1(V) =
⊔

i

Ui, where the sets Ui are pairwise disjoint and the restriction π|Ui → V is a

homeomorphism. We say that such a neighborhood V is evenly covered by π.

Example 11. Let X = S1 ⊆ C be the circle, considered as the set of points z with |z| = 1.
Then

π : X → X

z 7→ z2

is a covering space. [Give proof by picture using plot.]

Example 12. Consider again the circle X = S1 ⊆ C. Then

π : R→ S1

t 7→ e2πit

is a covering space of X. (One can visualize R embedded in R3 as a helix with p the
projection map down to the plane.) [See picture on p. 49 of GGD.]

Remark 13. The fibers π−1(P) of a covering are discrete, since π−1(U) =
⊔

I
Ui is a dis-

joint union, where U is an evenly covered neighborhood of P.

Remark 14. If X is a Riemann surface, then E inherits a unique holomorphic structure
such that the covering map π : E → X is holomorphic. The idea is that we simply pull
back the charts of X to E: given a chart (U, ϕ) on X, define a chart (π−1(U), ϕ ◦ π) on E.

Definition 15. Let π1 : E1 → X and π2 : E2 → X be coverings of X. A morphism from π1
to π2 is a continuous map f : E1 → E2 such that π1 = π2 ◦ f , i.e., such that the following
diagram commutes.

E1 E2

X

f

π1 π2

The map f is an isomorphism of coverings if it is a homeomorphism.

Definition 16. A deck transformation of a covering π : E → X is an automorphism of
the covering. The set of deck transformations of π is a group, denoted Deck(E/X) or
Deck

(
E π→ X

)
.

Theorem 17. Let X be a connected Riemann surface. Then there exists a covering π : X̃ → X
with X̃ connected and simply connected. Moreover X̃ is unique up to isomorphism.

Definition 18. The covering space X̃ in the previous theorem is called the universal covering
space of X.

Theorem 19. Let X be a connected Riemann surface and p : X̃ → X be its universal cover. Then
Deck(X̃/X) ∼= π1(X, x) for any choice of basepoint x ∈ X.
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Example 20.

• The covering map p : R → S1, t 7→ e2πit is the universal cover since R is simply
connected. Given t ∈ S1, we can write t = e2πiθ for some θ ∈ R. Then

p−1(e2πiθ) = {θ + n : n ∈ Z} .

Thus the deck transformations α ∈ Deck(R/S1) are all of the form α : s 7→ s + n
for some n ∈ Z, so

π1(S
1, 1) ∼= Deck(R/S1) ∼= Z .

• Let Λ ⊆ C be a lattice and X = C/Λ be the corresponding torus. Then the quotient
map p : C→ X is the universal cover, since C is simply connected. [Show pictures
at

https://angyansheng.github.io/blog/my-final-year-project-i and
https://www.math3ma.com/blog/a-recipe-for-the-universal-cover-of-x-y.]
Choose generators ω1, ω2 for Λ, so Λ = Zω1 ⊕Zω2. Given a point x ∈ X, then
the fiber above x is

p−1(x) = x + Λ = {x + mω1 + nω2 : m, n ∈ Z} .

Then the deck transformations α ∈ Deck(C π→ C/Λ) are all of the form α : z 7→
z + λ for some λ ∈ Λ, i.e.,

α : z 7→ z + mω1 + nω2

for some m, n ∈ Z. Thus

π1(X, x) ∼= Deck(C π→ C/Λ) ∼= Λ ∼= Z⊕Z .

Covering spaces possess some important lifting properties, one of which is the path-
lifting lemma.

Lemma 21 (Path-lifting lemma). Let p : E → X be a covering space. Let γ be a path on X
and let x = γ(0). Given any preimage e ∈ p−1(x) there exists a unique path γ̃ on E such that
p ◦ γ̃ = γ and γ̃(0) = e.

Definition 22. Such a γ̃ is called a lift of γ based at e.

Since γ̃ projects to the loop γ under p, then γ̃(1) must be in the fiber p−1(x), too. Thus
the path-lifting lemma allows us to define an action of π1(X, x) on a fiber p−1(x) of a
covering p : X̃ → X.

Given [γ] ∈ π1(X, x) and x̃ ∈ p−1(x), let γ̃ be the unique lift of γ with γ̃(0) = x̃. Define

x̃ · [γ] := γ̃(1) .

Lemma 23. The above definition

p−1(x)× π1(X, x)→ p−1(x)
(x̃, [γ]) 7→ x̃ · [γ] = γ̃(1)

gives a right π1(X, x) action on p−1(x).
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Proof. Note that, due to our convention that γ1 ∗ γ2 traverses first γ1, then γ2, then

x̃ · [γ1 ∗ γ2] = (x̃ · [γ1]) · [γ2]

so this is a right action. �

As you probably recall from group theory, actions of a group G on a set X are in bi-
jective correspondence with group homomorphisms G → Sym(X), where Sym(X) is the
symmetric group on X, i.e., the set of all bijections X → X. However, in order for this to
give a homomorphism and not an anti-homomorphism, we actually require a left action.
(That is, unless you also have your permutations act on the right, too. . . )

Fortunately, we can convert this right action into a left action by defining

[γ] ◦ x̃ := x̃ · [γ−1] .

With this definition, the “associativity” condition of a group action holds:

[γ1 ∗ γ2] ◦ x̃ = x̃ · [(γ1 ∗ γ2)
−1] = x̃ · [γ−1

2 ∗ γ−1
1 ] = (x̃ · [γ−1

2 ]) · [γ−1
1 ] = [γ1] ◦ ([γ2] ◦ x̃) .

Thus we get a group homomorphism π1(X, x) → Sym(p−1(x)). If the fiber p−1(x) is fi-
nite, containing d points, then by labeling the points 1, 2, . . . , d, we can identify Sym(p−1(x)) ∼=
Sd, hence we obtain a homomorphism π1(X, x)→ Sd.

Definition 24. Let X be a connected Riemann surface, x ∈ X and let p : E → X be a
covering space. Let θ : π1(X, x) → Sym(p−1(x)) be the group homomorphism defined
above. Then θ is called the monodromy representation of p and the image of θ is called its
monodromy group.

II.3. Groups acting on Riemann surfaces.

Definition 25. Let G be a group.
• Let X be a topological space. A (continuous) action of G on X is a group homomor-

phism G → Homeo(X), the group of self-homeomorphisms X → X.
• Let X be a Riemann surface and G be a group. A (holomorphic) action of G on X is

a group homomorphism G → Aut(X).

Given a group G acting on a Riemann surface X, we can form the quotient space G\X
whose points are the G-orbits of X. There is a natural quotient map

π : X → G\X
x 7→ [x]

where [x] denotes the G-orbit of x. Without further restrictions, G\X will only be a topo-
logical space, not necessarily a Riemann surface. The following properties of group ac-
tions yield nice properties of the quotient space G\X and the quotient map π.

Definition 26. Let G be a group acting (holomorphically) on a Riemann surface X.
(a) The action is faithful (or effective) if the kernel of the homomorphism G → Aut(X)

is trivial.
(b) The action is free if for all points x ∈ X, the stabilizer

StabG(x) := {g ∈ G : g · x = x}
is trivial.
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(c) The action is properly discontinuous or wandering if, for each x ∈ X there exists an
open neighborhood U 3 x such that the set

{g ∈ G : gU ∩U 6= ∅}

is finite. In particular, this means that StabG(x) is finite for all x ∈ X.

Lemma 27. If G acts on X properly discontinuously, then G\X is Hausdorff.

Proposition 28. Suppose G is a group acting on X freely and properly discontinuously. Then the
quotient map π : X → G\X is a covering map with deck transformation group G.

Theorem 29. Let G be a finite group acting faithfully on a Riemann surface X. Then G\X can
be given the structure of a Riemann surface. Moreover, the quotient map π : X → G\X is
holomorphic of degree #G and eP(π) = # StabG(P) for all P ∈ X.

We now have the language to define the Galois correspondence given by the universal
covering space.

Theorem 30. Let X be a connected Riemann surface and p : X̃ → X be its universal cover.

(a) The action of Deck(X̃/X) on X̃ is free and properly discontinuous. Moreover, the action
is transitive on each fiber.

(b) The action induces an isomorphism of Riemann surfaces

Deck(X̃/X)\X̃ → X
[x̃] 7→ p(x̃) .

(c) Let q : E → X be a covering. Then there exists a subgroup H ≤ Deck(X̃/X) such that
E ∼= H\X̃ as Riemann surfaces, and the following diagram commutes

E H\X̃

X Deck(X̃/X)\X̃

∼

q

∼

Remark 31. Parts (b) and (c) of the above theorem should remind you of Galois theory.

K 1

E = KH H

F Gal(K/F)
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X̃ 1

E = H\X̃ H

X Deck(X̃/X)

Example 32. Consider the universal cover p : R → S1, p : t 7→ e2πit and the covering
q : S1 → S1, q : z 7→ z2. Let H ≤ Deck(R/S1) be the subgroup of all deck transformations
of the form α : s 7→ s + 2m for some m ∈ Z. Then

2Z ∼= H ≤ Deck(R/S1) ∼= Z

so [Deck(R/S1) : H] = 2, and H\R ∼= 2Z\R ∼= S1. (We’re identifying every other loop in
the helix, so we get 2 coils of the helix after quotienting.) Moreover, we get a commutative
diagram.

z S1 H\R = 2Z\R

z2 S1 Z\R

∼

q

∼
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